Publications

Google Scholar link

 

31. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes
R. Xu, J. Huang, E. Barnard, S. S. Hong, P. Singh, E. Wong, T. Jansen, V. Harbola, J. Xiao, B. Y. Wang, S. Crossley, D. Lu, S. Liu, & H. Y. Hwang
Nature Communications, 11, 3141 (2020).

30. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes
S. S. Hong, M. Gu, M. Verma, V. Harbola, B. Y. Wang, D. Lu, A. Vailionis, Y. Hikita, R. Pentcheva, J. M. Rondinelli, & H. Y. Hwang
Science, 368, 71 (2020).

29. Freestanding crystalline YBa2Cu3O7-x heterostructure membranes
Z. Chen, B. Y. Wang, B. H. Goodge, D. Lu, S. S. Hong, D. Li, Y. Hikita, L. F. Kourkoutis, & H. Y. Hwang
Physical Review Materials, 3, 060801 (2019).

28. Large-area crystalline BaSnO3 membranes with high electron mobilities
P. Singh, A. Swartz, D. Lu, S. S. Hong, K. Lee, A. F. Marshall, K. Nishio, Y. Hikita, & H. Y. Hwang
ACS Applied Electronic Materials, 1, 1269 (2019).

27. Delta-doped SrTiO3 top-gated field effect transistor
H. Inoue, H. Yoon, T. A. Merz, A. G. Swartz, S. S. Hong, Y. Hikita, & H. Y. Hwang
Applied Physics Letters, 114, 231605 (2019).

26. Two-dimensional limit of crystalline order in perovskite membrane films
S. S. Hong, J. H. Yu, D. Lu, A. F. Marshall, Y. Hikita, Y. Cui, & H. Y. Hwang
Science Advances, 3, eaao5173 (2017).

25. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers
D. Lu, D. J. Baek, S. S. Hong, L. F. Kourkoutis, Y. Hikita, & H. Y. Hwang
Nature Materials, 15, 1255 (2016).

24. Lateral and vertical two-dimensional layered topological insulator heterostructures
Y. Li, J. Zhang, G. Zheng, Y. Sun, S. S. Hong, F. Xiong, S. Wang, H. R. Lee, & Y. Cui
ACS Nano, 9, 10916 (2015).

23. Topological insulator nanostructures
S. S. Hong & Y. Cui
Book chapter in Topological Insulators, John Wiley & Sons (2015).

22. Vertical heterostructure of two-dimensional MoS2 and WSe2 with vertically aligned layers
J. H. Yu, H. R. Lee, S. S. Hong, D. Kong, H.-W. Lee, H. Wang, F. Xiong, S. Wang, & Y. Cui
Nano Letters, 15, 1031 (2015).

21. Physical and chemical tuning of two-dimensional transition metal dichalcogenides
H. Wang, H. Yuan, S. S. Hong, Y. Li,& Y. Cui
Chemical Society Reviews, 44, 2664 (2015).

20. Topological insulator nanostructures
S. S. Hong, D. Kong, & Y. Cui
MRS Bulletin, 39, 873 (2014).

19. One-dimensional helical transport in topological insulator nanowire interferometers
S. S. Hong, Y. Zhang, J. J. Cha, X.-L. Qi, & Y. Cui
Nano Letters, 14, 2815 (2014).

18. Ambipolar field effect in Sb-doped Bi2Se3 nanoplates by solvothermal synthesis
D. Kong, K. J. Koski, J. J. Cha, S. S. Hong, & Y. Cui
Nano Letters, 13, 632 (2013).

17. Progress, challenges, and opportunities in two-dimensional materials beyond graphene
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, & J. E. Goldberger
ACS Nano, 7, 2898 (2013).

16. Silicon nanowires and related nanostructures as lithium-ion battery anodes
L. Hu, L. Cui, S. S. Hong, J. McDonough, & Y. Cui
Book chapter in Silicon and Silicide Nanowires, Pan Stanford Publishing (2013).

15. Unconventional Josephson effect in hybrid superconductor-topological insulator devices
J. R. Williams, A. J. Bestwick, P. Gallagher, S. S. Hong, Y. Cui, A. S. Bleich, J. G. Analytis, I. R. Fisher, & D. Goldhaber-Gordon
Physical Review Letters, 109, 056803 (2012).

14. Ultra-low carrier concentration and surface dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons
S. S. Hong, J. J. Cha, D. Kong, & Y. Cui
Nature Communications, 3, 757 (2012).

13. Effects of magnetic doping on weak antilocalization in narrow Bi2Se3 nanoribbons
J. J. Cha, M. Claassen, D. Kong, S. S. Hong, K. J. Koski, X.-L. Qi, & Y. Cui
Nano Letters, 12, 4355 (2012).

12. Weak antilocalization in Bi2(SexTe1-x)3 nanoribbons and nanoplates
J. J. Cha, D. Kong, S. S. Hong, J. G. Analytis, K. Lai, & Y. Cui
Nano Letters, 12, 1107 (2012).

11. In situ X-ray diffraction studies of (De)lithiation mechanism in silicon nanowire anodes
S. Misra, N. Liu, J. Nelson, S. S. Hong, Y. Cui, & M. F. Toney
ACS Nano, 6, 5465 (2012).

10. Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning
D. Kong, Y. Chen, J. J. Cha, Q. Zhang, J. G. Analytis, K. Lai, Z. Liu, S. S. Hong, K. J. Koski, S. K. Mo, Z. Hussain, I. R. Fisher, Z. X. Shen, & Y. Cui
Nature Nanotechnology, 6, 705 (2011).

9. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries
G. Zheng, Y. Yang, J. J. Cha, S. S. Hong, & Y. Cui
Nano Letters, 11, 4462 (2011).

8. One nanometer resolution electrical probe via atomic metal filament formation
S. S. Hong, J. J. Cha, & Y. Cui
Nano Letters, 11, 231 (2010).

7. Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy
S. S. Hong, W. Kundhikanjana, J. J. Cha, K. Lai, D. Kong, S. Meister, M. A. Kelly, Z. Shen, & Y. Cui
Nano Letters, 10, 3118 (2010).

6. New nanostructured Li2S/silicon rechargeable battery with high specific energy
Y. Yang, M. T. McDowell, A. Jackson, J. J. Cha, S. S. Hong, & Y. Cui
Nano Letters, 10, 1486 (2010).

5. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes
L. Hu, H. Wu, S. S. Hong, L. Cui, J. R. McDonough, S. Bohy, & Y. Cui
Chemical Communications, 47, 367 (2010).

4. Impedance analysis of silicon nanowire lithium ion battery anodes
R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins, & Y. Cui
Journal of Physical Chemistry C, 113, 11390 (2009).

3. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes
C. K. Chan, R. Ruffo, S. S. Hong, & Y. Cui
Journal of Power Sources, 189, 1132 (2009).

2. Structural and electrochemical study of the reaction of lithium with silicon nanowires
C. K. Chan, R. Ruffo, S. S. Hong, R. A. Huggins, & Y. Cui
Journal of Power Sources, 189, 34 (2009).

1. High-frequency micromechanical resonators from aluminum-carbon nanotube nanolaminates
J. H. Bak, Y. D. Kim, S. S. Hong, B. Y. Lee, S. R. Lee, J. H. Jang, M. Kim, K. Char, S. Hong, & Y. D. Park
Nature Materials, 7, 459 (2008).